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Abstract

This paper is concerned with the optimal control of a class of distributed systems described by

first order, quasilinear hyperbolic partial differential equations. In particular, this paper inves-

tigates an optimal control problem of a flow recirculation system; namely, a closed-circuit wind

tunnel. The flow recirculation is modeled by the Euler equations with boundary conditions pre-

scribing flow controls for the wind tunnel via a compressor performance model. The boundary

control variables are further constrained by a set of ordinary differential equations representing

dynamics of a lumped-parameter system that models a drive compressor speed regulation dynam-

ics. Thus, the control variables of the lumped-parameter system influence the boundary control

variables, which in turn influence the state variables of the distributed system. Necessary condi-

tions for optimality are derived using variational principles. To illustrate the theory, we consider

linear-quadratic optimal control for a linear hyperbolic partial differential equation with bound-

ary control. Future work will apply these results to obtain a numerical solution of an optimal wind

tunnel flow recirculation problem.
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†Professor, AIAA Associate Fellow, Department of Mechanical Engineering, Santa Clara University, Santa Clara,
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Introduction

The goal of this paper is to provide a general method for optimal control of a distributed sys-

tem governed by first order, quasilinear hyperbolic partial differential equations coupled with a

lumped-parameter system described by first order, nonlinear ordinary differential equations at the

distributed system boundary.

For example, the control of a vibrating string may be described by the wave equation, written as a

system of first order PDEs
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whereyi (x, t), i = 1, 2 are the primary state variables denoting the time and spatial partial deriva-

tives of the transverse displacement of the vibrating string. A control of the vibrating string may

be defined on one of its boundary conditions such as

y2 (0, t) = u (t)

The boundary control variableu (t) in turn may be controlled by a lumped-parameter system dy-

namics such as

ü (t) + 2ζωnu̇ (t) + ω2
nu (t) = v (t)

wherev (t) is the secondary control variable.

One application of this class of problem is the optimal control of a flow recirculation in a wind

tunnel. The majority of wind tunnels operated in the world are of a closed-circuit configuration.

Air flow in these wind tunnels is recirculated through a closed-circuit duct by a compressor to

achieve a desired air speed in a test section for testing a scaled model of a flight vehicle. One

particular wind tunnel of this type is the NASA Ames 11-By 11-Foot Transonic Wind Tunnel

(11-Ft TWT).
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Fig. 1 - NASA Ames 11x11-Ft Transonic Wind Tunnel

With reference to Fig. 1, the NASA Ames 11-Ft TWT is a production wind tunnel capable of

Mach 0.2 to Mach 1.5 at a variable stagnation pressure from 0.2 to 2.2 atmospheres. The air flow

is delivered by a three-stage compressor driven by a set of four synchronous induction motors

operated in tandem with a maximum power of 176 MW. After leaving the compressor, the air is

decelerated through a wide angle diffuser and subsequently through an aftercooler to reduce to the

stagnation temperature to within the wind tunnel operating limit. The air then passes through the

back leg diffuser and then the settling chamber, where the air turbulence is reduced by a turbulence

reduction system consisting of a set of screen and honeycomb flow conditioning devices. The

conditioned air is then accelerated through a contraction and a flexible wall nozzle before entering

the test section. The nozzle contour is designed to achieve a uniform Mach number distribution in

the test section. The test section, measured 11 Ft x 11 Ft, provides the access to the scaled model,

which is sting-mounted on a model support strut.

The test section aerodynamic conditions are normally controlled to ensure that the Mach number

variation is within a prescribed tolerance. The Mach number control is accomplished by a com-

bination of the compressor speed and the flap position of the variable-camber inlet guide vanes.

There are two modes of Mach number control: command-following control and regulation con-

trol. In command-following control, the Mach number is transferred from one setpoint to another,
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whereas with regulation control, the Mach number is maintained at a setpoint during measurements

of aerodynamic data of the scaled model.
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Fig. 2 - NASA Ames 11x11-Ft TWT Operating Envelope

With reference to Fig. 2, by varying the inlet guide vane (IGV) flap positionθ at a given compressor

speedω, the Mach number can therefore be controlled. Presently, when a new Mach number

setpoint is specified outside a current IGV range, the IGV have to be returned to the maximum flap

position prior to changing the compressor speed setpoint. Additionally, the compressor speed must

be controlled at each prescribed setpoint. An obvious improvement in the current Mach number

control is to allow a simultaneous control of both the compressor speed and IGV flap deflection.

Hence, this motivates the needs for examining trajectories of the control variables in the context of

optimal control.

A further improvement is to consider a new mode of Mach number regulation control; namely,

feedforward adaptive control. The current problem is that during a continuous pitch of the scaled
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model, the Mach number generally cannot be held close to the specified tolerance because of

changes in the aerodynamics of the wind tunnel due to the changing model configuration in the

test section. The idea is that if the aerodynamic disturbance could somehow be estimated via

some learning algorithm such as neural network, then in theory the Mach number variation could

be minimized by an optimal feedforward control such as linear-quadratic control. The idea of

incorporating of neural network in the Mach number control is not new, since this concept has

been investigated by Motter and others [1]. The use of optimal adaptive feedforward control in the

context of this study, however, is considered novel and is proposed for a future work based on the

distributed optimal control groundwork laid out in this paper.

A Wind Tunnel Distributed Model

In order to carry out a control investigation, a dynamic model of a wind tunnel is needed. Soeter-

boek [2] describes a method of modeling the test section Mach number by an experimental transfer

function coupled with a time delay. In the past, the NASA Ames 11-Ft TWT Mach number con-

trol was developed using a quasi-steady state model based on the relationship between the Mach

number and the experimentally derived compressor performance characteristics [3]. The use of

a quasi-steady state model to describe the time varying behavior of the air flow thus circumvents

the need to model the complex unsteady air flow. However, with the pseudo-steady state model,

the time delay effect is not accurately captured and therefore can lead to poor control handling of

disturbance rejection.

With the progress in computing technologies, modeling the unsteady air flow in a wind tunnel using

fluid physics equations of motion for a control study has become a real possibility. This approach

is adopted in this paper. Specifically, the unsteady air flow in a wind tunnel can be simulated by the

1-D Euler equations of motion with friction factors to model circuit losses. The use of a 1-D model

for an actual 3-D flow in a wind tunnel is justified by the fact that for a control simulation only the

spatially averaging effect of the flow is of a primary interest, rather than the detail features of the

actual 3-D flow field. Furthermore, the 1-D model enables the use of experimentally determined
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friction factors to ensure that the steady state solution converges to the actual measured circuit

pressure losses.

The three aerodynamic state variables of interest in a wind tunnel are the Mach number,M , the

stagnation pressure,p0, and stagnation temperature,T0. It is noted that the mass flow rate,ṁ,

through a wind tunnel, which is normally constant at a steady state operation, is a function of the

three aerodynamic state variables. Thus, the mass flow rate can also be used in place of the Mach

number as an aerodynamic state variable. The equations of motion derived for this set of state

variables are

yt + A (y, x)yx + B (y, x) = 0 (1)

wherey =
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are expressed in terms of the usual aerodynamic variables:ρ0, ρ, p, T , u, c; and the duct parameters:

f , A, D; denoting respectively the stagnation and static density, static pressure and temperature,

flow speed, speed of sound, friction factor, flow area, and hydraulic diameter. The specific heat

ratiok is taken to be 1.4 for diatomic gases.

Equation (1) is the Euler equation with source terms for modeling the circuit loss behavior of a

wind tunnel. This equation can also be written in the following conservation form

yt + f (y, x)x + g (y, x) = 0
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whereA = fy andg = B− fx.

Equation (1) is generally classified as a vector quasilinear hyperbolic partial differential equation

sinceA andB are functions ofy, and additionally the eigenvalues ofA are real and distinct. In

fact, it can be shown thatλ (A) = u, u±c are the eigenvalues, which have a physical interpretation

as being the wave propagation speeds in a fluid medium.

The flow control problem of a wind tunnel is now posed as an initial-boundary value problem of

Eq. (1). The initial condition specifies an initial steady state operation of the wind tunnel as follows

y (x, 0) = h (x) (2)

The compressor is a point of discontinuity in the flow in a wind tunnel since work is done to raise

the pressure across the compressor to compensate for the circuit loss. Therefore, the boundary

condition is specified by the performance characteristics of the compressor. For convenience, let

x = 0 andx = L be defined as the compressor exit and inlet, respectively. By a dimensional

analysis [4], the performance characteristics can generally be expressed as

{
p0(0,t)
p0(L,t)

T0(0,t)
T0(L,t)

− 1

}
= f (ṁ (L, t) , ω, θ) (3)

By conservation of mass, it follows that

ṁ (0, t) = ṁ (L, t) (4)

Thus, the boundary condition of Eq. (1) can generally be written as

g (y (0, t) ,y (L, t) ,u) = 0 (5)

whereu =
{
ω θ

}T
is the primary compressor control vector.

Since the compressor speed is to be controlled at all times during a Mach number control, an
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auxiliary dynamic equation must be specified to relate the compressor speed to a secondary control

variable. Physically, this dynamic equation describes the drive motors that control the compressor

speed, which can be written as a first order ordinary differential equation

Jmotorω̇ = Tmotor (ω, ωm)− Taero (y (0, t) ,y (L, t)) (6)

whereωm is related to the drive motor control variable.

The optimal control problem is now formulated as a minimization of the following tracking-type

cost functional that depends on both the distributed and lumped-parameter variables

J =
1

2

∫ T

0

∫ L

0

(y − yd)
T P (y − yd) dxdt +

1

2

∫ T

0

[
q (ω − ωd)

2 + rθ2 + sω2
m

]
dt (7)

An Optimal Control Problem

Optimal control of distributed systems modeled by partial differential equations with boundary

controls has been widely studied (see, for example, Fursikov [5]). A distinguishing feature of

the proposed model, however, is that one of the boundary control variables is in turn controlled

by another separate process. This secondary control system in effect becomes a constraint to the

boundary control variable of interest. Optimal control studies of combined distributed and lumped-

parameter systems appears to be a new area of research interest.

In optimal control studies of distributed systems, a typical approach used by many investigators

is to transform distributed systems into finite-dimensional systems by means of various numerical

discretization techniques such as the finite-element method (see, for example, Becker [6]). In

general, the finite-element method is a special case of weak-form solutions of partial differential

equations. A weak-form solution implies that the partial differential equation can be recast into

an integral form using weighting functions that satisfy certain smoothness and boundary value

requirements.

Other direct approaches to studying the optimal control of partial differential equations have been
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examined by various workers. In one of his earlier works, Butkovskiy [7] discussed a maximum

principle for first order, quasilinear partial differential equations. Kazemi [8] gave results of adjoint

equations for a reduced system of first order partial differential equations, each with only one

derivative of single independent variable. Hou and Yan applied an adjoint method to a weak form

of a Navier-Stokes system [9].

The adjoint method based on calculus of variations enjoys a considerable popularity in the opti-

mization studies of Euler and Navier-Stokes equations (see, for example, Jameson [10]). One of

the features of the Euler equations is the presence of shocks where discontinuities in spatial deriva-

tives occur. Variation of shock locations poses a considerable difficulty with the adjoint method as

discussed by Cliff et al [11]. In the present study, the analysis is concerned with a subsonic flow

for which the stagnation pressure is not discontinuous within the domain of solution and thus can

be assumed to be piecewise smooth. For a transonic flow in a wind tunnel, the presence of a weak

shock could be handled by a shock fitting technique whereby a shock location is prescribed a pri-

ori. The solution domain may then be divided into multiple subdomains where aerodynamic state

variables upstream and downstream of the shock are related by the Rankine-Hugoniot relationship.

The optimal control then admits a corner point where the state variables are discontinuous. Other

approaches could also be formulated using a shock capturing technique which would necessitate

the Euler equations be formulated in a conservation form and the aerodynamic state derivatives

across the shock be computed by methods proposed by Ulrich [12] and others.

For the control problem at hand, letΩ be a compact subspace inR2 with a boundaryΓ composed

of Γ1 = [0, L] andΓ2 = [0, T ]. Consider a boundary control problem of a distributed system (S)

governed by a system of first order, quasilinear partial differential equations as follows

Dy + B (y,w, x) = 0 ∀ (x, t) ∈ Ω (8)
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whereD is a differential operator defined by

Dy = yt + A (y, x)yx

y (x, t) : Ω → Rn in classC1 is a distributed state vector,w (x, t) : Ω → Rk belongs to a convex

subset of admissible distributed controlWad ⊆ Rk, A (y, x) : Rn × Γ1 → Rn × Rn is a square

matrix of convective coefficients, andB (y,w, x) : Rn × Rk × Γ1 → Rn is a source vector.

In addition, consider a lumped-parameter system (P) that possesses a certain control influence on

the distributed system (S) as follows

u̇ = f (y (0, t) ,y (L, t) ,u,v) ∀t ∈ Γ2 (9)

whereu (t) : Γ2 → Rm in classC1 is a boundary control state vector,v (t) : Γ2 → Rl belong to a

convex subset of admissible lumped-parameter controlUad ⊆ Rl, andf (y (0, t) ,y (L, t) ,u,v) :

Rn × Rn × Rm × Rl → Rm is a vector function.

The coupling of the systems (S) and (P) enters in the boundary condition of Dirichlet type as

follows

g (y (0, t) ,y (L, t) ,u) = 0 ∀t ∈ Γ2 (10)

whereg (y (0, t) ,y (L, t) ,u) : Rn × Rn × Rm → Rn is a vector of boundary control functions.

For compactness, lety0 (t) = y (0, t) andyL (t) = y (L, t) with the superscripts0 andL hence-

forth meaning the values at the boundariesx = 0 andx = L.

To ensure well-posedness of boundary-value solutions of Eq. (8), the following initial conditions

are specified

y (x, 0) = h (x) ∀x ∈ Γ1 (11)

u (0) = u0 (12)

The following assumptions are required

10



A1: w (x, t) andv (t) are measurable, and squared-integrable in the Lebesgue sense withL2

norms bounded onΩ.

A2: A (y, x) andB (y,w, x) are in at least classC1 and satisfy the Lipschitz condition onΓ1

andRn × Rk × Γ1, respectively, for some positive constantsCi, i = 1, 2, ..., 4 such that

|A (y2, x2)−A (y1, x1)| ≤ C1 |y2 − y1|+ C2 |x2 − x1|

|B (y2,w2, x)−B (y1,w1, x)| ≤ C3 |y2 − y1|+ C4 |w2 −w1|

A3: g
(
y0,yL,u

)
andh (x) are continuous in at least classC1, andg also satisfies the Lipschitz

condition onRn × Rn × Rm

A4: f
(
y0,yL,u,v

)
is continuous in at least classC1 and satifies the Lipschitz condition on

Rn × Rn × Rm × Rl.

Under the assumptions (A1)-(A3), Eq. (8) has a unique solution onΩ. The assumptions (A1) and

(A4) also assert the existence and uniqueness of solutions to Eq. (9) onΓ2.

Consider an optimal control problem of minimizing the following cost functional:

J (w,v) =

∫ T

0

∫ L

0

L1 (y,w, x) dxdt +

∫ T

0

L2

(
y0,yL,u,v

)
dt (13)

subject to systems (S) and (P). For generality, the final timeT is considered free.

Necessary Conditions for Optimal Control

Adopting the usual variational approach, a trial solution of Eq. (8) is proposed as a sum of the

optimal solutiony (x, t) and its variation

Y (x, t) = y (x, t) + z (x, t)
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wherez (x, t) : Ω → Rn in classC1 is an admissible variation ofy (x, t).

Similarly, a trial solution of the distributed control is formed as follows

W (x, t) = w (x, t) + r (x, t)

wherew (x, t) is the optimal distributed control andr (x, t) : Ω → Rk in classC1 is an admissible

control variation ofw (x, t).

A system of variational partial differential equations is obtained by taking the Fréchet differential

of Eq. (8)

Dz + (Ayyx + By) z + Bwr = 0

whereAyyx, By, andBw are the Fréchet derivatives of the system (S).

Similarly, a trial solution of Eq. (9) is formed by letting

U (t) = u (t) + p (t)

V (t) = v (t) + q (t)

wherep (t) : Γ2 → Rm andq (t) : Γ2 → Rl in class ofC1 are admissible variations ofu (t) and

v (t), respectively.

Then, the following system of variational ordinary differential equations is obtained

ṗ = fy0z0 + fyLzL + fup + fvq

The variational Dirichlet boundary condition, Eq. (10), for the system of variational partial differ-

ential equations is

gy0z0 + gyLzL + gup = 0

Since the initial conditions of the systems (S) and (P) are given, their corresponding variations are
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required to vanish there. Hence

z (x, 0) = 0

p (0) = 0

Applying the Lagrange multiplier yields the augmented cost functional as follows

J =

∫ T

0

∫ L

0

[
L1 + λT (Dy + B)

]
dxdt +

∫ T

0

[
L2 + µT (−u̇ + f) + ηTg

]
dt

whereλ (x, t) : Ω → Rn is the distributed adjoint vector,µ (t) : Γ2 → Rm is the lumped-

parameter adjoint vector,η (t) : Γ2 → Rn is the boundary condition adjoint vector, and the

superscriptT denotes matrix transpose.

Now, introduce a dual Hamiltonian system for the systems (S) and (P) as follows

H1 (y,w,λ, x) = L1 + λTB (14)

H2

(
y0,yL,u,v,µ,η

)
= H3 + ηTg (15)

whereH3 is the customary Hamiltonian function for the system (P) defined without the boundary

condition constraint as follows

H3

(
y0,yL,u,v,µ

)
= L2 + µT f (16)

Computing the Fréchet differential of the cost functionalJ yields

δJ =

∫ T

0

∫ L

0

[
H1,yz + H1,wr + λT (Dz + Ayyxz)

]
dxdt +

∫ L

0

(
H1 + λT Dy

)
t=T

δtdx

+

∫ T

0

(
H2,y0z0 + H2,yLzL + H2,up + H2,vq− µT ṗ

)
dt +

(
H2 − µT u̇

)
t=T

δt

Invoking the adjoint operation defined by an inner product over the domain of solutionΩ to perform
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integration by parts as follows

〈Dz,λ〉 = 〈z, D∗λ〉+ b (17)

where

〈Dz,λ〉 =

∫∫

Ω

DzT λdxdt

D∗ is the adjoint of the differential operatorD, andb is the boundary condition term.

Then by means of the Green’s Theorem, one gets

D∗λ = −DT λ−
[
(Ayyx)

T λ + AT
x λ

]
(18)

whereDT is a differential operator such that

DT λ = λt + AT λx

and the boundary termb

b =

∮

Γ

zT
(
AT λdt− λdx

)
(19)

Integrating the contour integral on the boundaryΓ with vanishing initial variations yields

b =

∮

Γ

zT
(
AT λdt− λdx

)
=

∫ T

0

[(
λL

)T
ALzL − (

λ0
)T

A0z0
]
dt +

∫ L

0

λTz
∣∣
t=T

dx

This gives

∫∫

Ω

λT Dzdxdt =

∫∫

Ω

(
DT λT + λTAyyx + λTAx

)
zdxdt

+

∫ T

0

[(
λL

)T
ALzL − (

λ0
)T

A0z0
]
dt +

∫ L

0

λTz
∣∣
t=T

dx (20)

Substituting the foregoing results and integrating by parts in conjunction with vanishing variations
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at the initial time, the first variation of the cost functionalJ becomes

δJ =

∫ T

0

∫ L

0

[(
H1,y −DT λT − λTAx

)
z + H1,wr

]
dxdt

+

∫ T

0

[(
λL

)T
ALzL − (

λ0
)T

A0z0
]
dt +

∫ L

0

[
H1δt + λT dy

]
t=T

dx

+

∫ T

0

[
H2,y0z0 + H2,yLzL +

(
H2,u + µ̇T

)
p + H2,vq

]
dt +

[
H2δt− µT du

]
t=T

(21)

where

dy (x, T ) = z (x, T ) + Dy (x, T )δt

du (T ) = p (T ) + u̇ (T ) δt

The necessary conditions for minimizing the cost functionalJ may now be derived by requiring

that each variational term in the first variation of the cost functional be zero for any arbitrary

variation. Thus, the following associated distributed adjoint system (Σ) and lumped-parameter

adjoint system (Π) are obtained

DT λ + AT
x λ−HT

1,y = 0 (22)

µ̇ + HT
2,u = 0 (23)

Equation (22) is a system of first order, quasilinear hyperbolic partial differential equations in terms

of the adjoint vectorλ (x, t). Since the eigenvalues of the matricesA andAT are the same, the

adjoint system (Σ) preserves the characteristics of the original system (S).

In addition, two auxiliary algebraic equations are obtained as follows

(
A0

)T
λ0 −HT

2,y0 = 0 (24)

(
AL

)T
λL + HT

2,yL = 0 (25)
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Solving for the adjoint vectorη (t) from Eqs. (15) and (24) in terms of the Hamiltonian function

H3, assumingy (0, t) explicitly appears in the boundary conditiong, yields

η =
(
gT

y0

)−1
[(

A0
)T

λ0 −HT
3,y0

]

Upon substitution, the following boundary condition for the adjoint system (Σ) is obtained

(
AL

)T
λL + HT

3,yL + gT
yL

(
gT

y0

)−1
[(

A0
)T

λ0 −HT
3,y0

]
= 0 (26)

From the foregoing results, the adjoint system (Π) in terms of the Hamiltonian functionH3 may

be expressed as follows

µ̇ + HT
3,u + gT

u

(
gT

y0

)−1
[(

A0
)T

λ0 −HT
3,y0

]
= 0 (27)

The necessary condition for an unbounded optimal control of the system (S) is obtained from

H1,w = 0 (28)

There are two special cases to be considered. The first case is whenw = w (t), for which the

necessary condition gives ∫ L

0

H1,wdx = 0

For the case whenw = w (x), the optimal control is obtained from

∫ T

0

H1,wdt = 0

Similarly, the necessary condition for an unbounded optimal control of the system (P) is given by

H2,v = 0 (29)
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The first variation also gives rise to the following transversality conditions

∫ L

0

λT (x, T ) dy (x, T ) dx = 0 (30)

µT (T ) du (T ) = 0 (31)

Actually, a stronger transversality condition for the adjoint system (Σ) would be

λT (x, T ) dy (x, T ) = 0

These transversality conditions specify the final values of the adjoint vectorsλ (x, t) andµ (t).

The known values of the adjoint vectors at the final time with the specified initial values of the

state vectors establish a two-point boundary value problem.

In addition to the foregoing necessary conditions, two auxiliary final-time conditions are to be

satisfied ∫ L

0

H1 (x, T ) dx = 0 (32)

H2 (T ) = 0 (33)

A stronger condition would be

H1 (x, T ) = 0

If the coefficient matrixA and the Hamiltonian functionH1 are not explicit functions ofx and

t, then the Hamiltonian functionH1 is constant along the characteristic direction. To show this,

the characteristic method is used to transform the partial differential equations into ordinary dif-

ferential equations by characteristic vectorss = Φ−1y andφ = ΦT λ whereΦ is a matrix of the

corresponding column eigenvectors ofA such thatA = ΦΛΦ−1 andΛ is a diagonal matrix of the

eigenvalues.

Then Eqs. (8) and (25) become
ds

dt
= −Φ−1B
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dφ

dt
= ΦT HT

1,y

with the total derivative understood to be along each characteristic direction as defined by
(

dx
dt

)
i
=

λi (A)

Since the Hamiltonian functionH1 is not an explicit function ofx andt, its time derivative can be

computed using chain rule differentiation as follows

dH1 (y,w,λ)

dt
= H1,y

dy

ds

ds

dt
+ H1,λ

dλ

dφ

dφ

dt
+ H1,w

(
wt + wx

dx

dt

)

By the virtue of the necessary condition of Eq. (28), the foregoing expression can be simplified as

dH1

dt
= −H1,yB + BT HT

1,y = 0 (34)

Thus, the Hamiltonian functionH1 is constant along each characteristic direction. This result

indicates that some relationships in optimal control for a system of ordinary differential equations

may be also applicable for a system of first order hyperbolic partial differential equations through

the use of the characteristic transformation.

It can be shown that the system (S) is asymptotically stable under a certain condition. Asymptotic

stability provides a certain measure of controllability, which enables the system (S) to transfer from

some initial target set to the origin in a finite time. Existence of an optimal control solution is then

asserted.

The stability of the system (S) may be examined in the context of the Lyapunov’s direct method

in conjunction with the characteristic method by forming a positive-definite continuous function

V (y) > 0. The time derivative ofV (y) is computed by chain rule differentiation

V̇ (y) =
dV

dy

dy

ds

ds

dt

18



The Lyapunov’s direct method yields

V̇ (y) =
dV

dy
Φ

(−Φ−1B
)

= −dV

dy
B < 0

Let V (y) = yTy, then the asymptotic stability for the system (S) requires that2yTB > 0. This

implies

‖y −B‖ <
√
‖y‖2 + ‖B‖2 (35)

By a similar analysis, it can be shown that the adjoint system (Σ) possesses the following stability

requirement

‖λ− (
AT λ−HT

1,y

)‖ <
√
‖λ‖2 + ‖AT λ−HT

1,y‖2 (36)

Now, suppose that the boundary control state vectoru (t) is partially constrained so thatu =
{
U V

}T
whereU (t) : Γ2 → RN , N < m is a constrained boundary state vector andV (t) :

Γ2 → Rm−N is a boundary control vector. The constraint onU is defined by the following lumped-

parameter system (Q)

U̇ = f (y (0, t) ,y (L, t) ,U,v) (37)

Then, the optimality of the systems (S) and (Q) is defined by the following partial differential

equation

λt + AT λx +
(
AT

x −BT
y

)
λ− LT

1,y = 0 (38)

subject to the boundary condition

[
fT
yL − gT

yL

(
gT

y0

)−1
fT
y0

]
µ+gT

yL

(
gT

y0

)−1 (
A0

)T
λ0+

(
AL

)T
λL+

[
LT

2,yL − gT
yL

(
gT

y0

)−1
LT

2,y0

]
= 0

(39)

and the following ordinary differential equation

µ̇ +
[
fT
U − gT

U

(
gT

y0

)−1
fT
y0

]
µ + gT

U

(
gT

y0

)−1 (
A0

)T
λ0 +

[
LT

2,U − gT
U

(
gT

y0

)−1
LT

2,y0

]
= 0 (40)
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with the following optimal controls

LT
1,w + BT

wλ = 0 (41)

LT
2,v + fT

v µ = 0 (42)

LT
2,V − gT

V

(
gT

y0

)−1
LT

2,y0 + gT
V

(
gT

y0

)−1 (
A0

)T
λ0 = 0 (43)

If the controls are bounded by inequality constraints, then the necessary conditions may be obtained

by the minimum principle. To illustrate the minimum principle, let the candidate optimal state and

control vectors be denoted with the superscript *. Then, if the optimal control vectorsw∗ andv∗

were to be perturbed by some measure, the cost functionalJ with the perturbed controls must be

greater than that with the optimal controls. That is

J (w∗,v∗) < J (w∗ + r,v∗ + q)

This implies that

∫ T

0

∫ L

0

H1 (y∗,w∗,λ, x) dxdt <

∫ T

0

∫ L

0

H1 (y∗,w∗ + r,λ, x) dxdt

∫ T

0

H2

(
y0∗,yL∗,u∗,v∗,µ

)
dt <

∫ T

0

H2

(
y0∗,yL∗,u∗,v∗ + q, µ

)
dt

Thus, the above inequalities indicate that the optimal controlsw∗ andv∗ are those that minimize

the Hamiltonian functionsH1 andH2, respectively. This statement equivalently leads to the fol-

lowing minimum principle

w∗ = arg min
w

[H1 (y,w, λ, x)] (44)

v∗ = arg min
v

[
H2

(
y0,yL,u,v,µ

)]
(45)
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If w = w (t), then Eq. (44) is replaced by

w∗ = arg min
w

[∫ L

0

H1 (y,w,λ, x) dx

]

Similarly, if w = w (x), then Eq. (44) is replaced by

w∗ = arg min
w

[∫ T

0

H1 (y,w,λ, x) dt

]

Equations (44) and (45) are the necessary conditions for optimal controls of the distributed and

lumped-parameter systems (S) and (P) regardless of whether or not the controls are bounded. Thus,

they are stronger statements than the necessary conditions for optimality obtained from Eqs. (28)

and (29). Clearly, if the controls are unbounded, the minimum principle is reduced to the necessary

conditions obtained from the variational principle.

Linear-Quadratic Control

Consider a linear-quadratic cost functional of tracking type

J =
1

2

∫ T

0

∫ L

0

(y − yd)
T P (y − yd) dxdt +

1

2

∫ T

0

(
wTQw + vTRv

)
dt (46)

whereP andQ are positive semidefinite matrices,R is a positive definite matrix, andyd is the

steady state solution to the following linear hyperbolic PDE constraint

yt + Ayx + Cy = 0 (47)

whereA andC are constant coefficient matrices. Equation (47) is subject to an initial condition

y (x, 0) = 0

Further, it is assumed that the PDE system only has forward wave propagation speeds, i.e., the

21



matrix A only admits positive-valued eigenvalues, to be consistent with the following boundary

condition

y (0, t) = Fu (t)

whereu (t) is the boundary control variable affecting the PDE system, which is further subject to

an ODE system dynamics

u̇ = Gu + By (0, t) + Hv

To implement a tracking control, we apply a standard control technique of augmenting the system

dynamics with an integral compensator to reduce the steady state error, resulting in the following

equation

ẇ = Gww + Hwv + Lwud ⇔





ė

ż





=




G + BF 0

I 0








e

z





+





H

0





v +





G + BF

0





ud (48)

whereud is a constant setpoint to achieveyd so thatyd (0) = Fud, z is the integral of the error

terme = u− ud, andv is an unbounded control.

The necessary conditions yield the adjoint PDE

λt + AT λx −CT λ−PT (y − yd) = 0 (49)

subject to the boundary condition

AT λ (L, t) = 0

22



with the adjoint ODE

µ̇ + QTw + GT
wµ−

{
FTAT λ (0, t) 0

}T

= 0 (50)

and a control

v = −R−THT
wµ

Using the Laplace transform and characteristic transformation, the general solutions for the PDEs

are found to be

y (x, t) = L−1
{
Φe−xΛ−1(sI+Φ−1CΦ)Φ−1L{

y (0, t)
}}

λ (x, t) = L−1
{
Φ−T

[
e(L−x)Λ−1(sI−ΦT CT Φ−T )γ (L, s)− γ (x, s)

]}

where

γ (x, s) =
(
Φ−1CΦ + ΦTCTΦ−T

)−1
ΦTPT

[
L{y (x, t)} − yd (x)

]

Now if Φ−1CΦ andΦTPTΦ are diagonal matrices, then the matrix exponential terms are separa-

ble and the solutions may be simplified as

y (x, t) = Φe−xΛ−1Φ−1CΦf
(
t− xΛ−1

)
(51)

λ (x, t) =
1

2
Φ−T

[
e−2(L−x)Λ−1Φ−1CΦ − I

]
ΦTC−1PT

[
y (x, t)− yd (x)

]
(52)

wheref (t) = Φ−1y (0, t) and

f
(
t− xΛ−1

)
=

{
f1

(
t− xΛ11

−1
)

f2

(
t− xΛ22

−1
)

... fn

(
t− xΛnn

−1
) }T

Thus, the solutions to the PDE system are a superposition of wave propagation solutions corre-

sponding to individual eigenvalues of the coefficient matrixA.

We now consider a special case when the distributed state vectory (x, t) has a faster time constant

than the boundary control state vectoru (t). This is a multiple time-scale problem which can be
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analyzed by the singular perturbation method. For the present, we will only consider a reduced

problem at some time beyond the boundary layer of the solutions where the reduced solution

approaches asymptotically to the actual solution. The reduced problem then becomes

ε





y

λ





t

+



A 0

0 AT








y

λ





x

+




C 0

−PT −CT








y

λ





=





0

−PTyd





We consider an approximate solution of the type

λ (x, t) = A−TS (x)
[
y (x, t)− yd (x)

]
(53)

Substituting into the reduced partial differential equations and lettingε → 0 yield the following

matrix Lyapunov differential equation

dS

dx
− SA−1C−CTA−TS−PT = 0 (54)

subject to a boundary condition

S (L) = 0

It may be verified that the solution to Eqs. (53) and (54) yield the same result as Eq. (52).

The system of ODEs now becomes





ẇ

µ̇





=




Gw −HwR−THT
w

−QT
w −GT

w








w

µ





+





Lwud

0





where

Qw = Q−




FTS (0)F 0

0 0



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The optimal control is found to be

v = −R−THT
w (Ww + Kud) (55)

whereW is a solution to the following matrix Riccati differential equation

Ẇ −WHwR−THT
wW + WGw + GT

wW + QT
w = 0 (56)

andK is the solution to the following matrix differential equation

K̇ +
(
GT

w −WHwR−THT
w

)
K + WLw = 0 (57)

The final-time conditions for both equations are

W (T ) = 0

K (T ) = 0

The boundary control vectoru (t) can now be obtained from

u̇ =
(
G−HR−THTW11

)
u−HR−THTW12z−HR−THT (K1 −W11)ud (58)

As an example, we consider a linearized flow about an equilibrium point. Since the mass flow

and total temperature are weak functions inx for an adiabatic flow, we may obtain an approximate

PDE for the total pressure by ignoring the spatial partial derivatives of the mass flow and total

temperature in Eq. (1) so that

∂p0

∂t
+ ū

[
1− (k − 1)

T̄

T̄0

]
∂p0

∂x
+

kū3

2c̄2

f̄

D

[
1− (k − 1)

T̄

T̄0

]
p0 ≈ 0 (59)

where the overbar denotes the steady state values. Equation (59) is a scalar, linear advection
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equation of the form

yt + ayx + cy = 0

Suppose the total pressure at the duct inlet is subject to a time-varying boundary condition de-

scribed by a control

y (0, t) = u (t)

whereu (t) is in turn prescribed by a first-order ODE control action

u̇ = gu + hv

The objective is to findv (t) that optimally tracks a unit step inputud = 1 to the system initially at

rest so thaty (x, T ) → yd (x) = ude
− cx

a in a linear-quadratic sense

J =
1

2

∫ L

0

∫ T

0

p (y − yd)
2 dxdt +

1

2

∫ T

0

(
wTQw + rv2

)
dt

We introducew =

{
u− ud z =

∫ t

0
(u− ud) dt

}T

as an integrally compensated augmented

state vector with a dynamics

ẇ = Gw + Hv + Lud

where

G =




g 0

1 0


 , H =





h

0





, L =





g

0





Proceeding to find the adjoint solution from Eq. (54), the Lyapunov differential equation becomes

dS

dx
− 2c

a
S − p = 0
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whose solution with the boundary conditionS (L) = 0 is

S (x) = −pa

2c

[
1− e−

2a(L−x)
c

]

The matrixQ is then augmented withS (0) = −pa
2c

(
1− e−

2aL
c

)
in the first diagonal element. The

solution for the adjoint partial differential equation then becomes

λ (x, t) =
1

a
S (x) [y (x, t)− yd (x)]

where

y (x, t) = e−
cx
a f

(
t− x

a

)
(60)

Eq. (60) is a boundary-value problem for which the wave propagation functionf (t) = u (t) is to

be determined from the boundary control solution ofu (t) in Eq. (58)

u̇ =

(
g − h2W11

r

)
u− h2W12

r
z − h2K

r
(61)

whereW andK are the steady-state solutions of Eqs. (56) and (57). Equation (61) may be written

as

ü−
(

g − h2W11

r

)
u̇ +

h2W12

r
(u− ud) = 0

with initial conditionsu (0) = 0 andu̇ (0) = −h2K
r

. The solution ofu (t) is then obtained to be

u (t) = ud

{
1− e−σt

[
cos ωt +

(
h2K

rωud

− σ

ω

)
sin ωt

]}
(62)

whereσ = 1
2

(
h2W11

r
− g

)
andω =

√
h2W11

r
− 1

4

(
h2W11

r
− g

)2
.
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The optimal solution ofy (x, t) is now determined to be

y (x, t) =





0 t ≤ x
a

e−
cx
a ud

{
1− e−σ(t−x

a)
[
cos ω

(
t− x

a

)
+

(
h2K
rωud

− σ
ω

)
sin ω

(
t− x

a

)]}
t > x

a

The solution surfaces of the PDE system are plotted on Figs. 3 and 4.

The piecewise optimal solution ofy (x, t) reflects the wave propagation nature of hyperbolic partial

differential equations. The system is initially at rest and remains so until the initial disturbance

due to the unit-step input at the boundary has propagated through the system. The PDE system

eventually would reach a new equilibrium atyd (x). Every pointx > 0 is subject to a time delay

effect of td = x/a. In fact, the PDE may be written in a semi-discretized form as a time-delay

ODE

ẏ (t) = −
( a

∆x
+ c

)
y (t) +

a

∆x
y (t−∆td)
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Fig. 3 - Extremal Boundary Control Solution Surface ofy (x, t)
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Fig. 4 - Adjoint Solution Surface ofλ (x, t)

The foregoing problem is an example of a simple hyperbolic system with wave propagation in

only the downstream direction. In such a case, the boundary conditions must provide information

from the upstream end of the solution domain. More often than not, waves in 1-D systems such

as subsonic flow or elastic solids generally propagate in both directions. The boundary conditions

therefore must be specified accordingly at both ends of the solution domain in order to establish

well-posed boundary conditions. Ifn is the number of positive eigenvalues of the matrixA, then

n independent boundary conditions at the upstream end must be specified, while the remaining

boundary conditions must be imposed at the downstream end. Equation (10) provides general

boundary conditions for handling a hyperbolic system that involves wave propagation in both di-

rections. This type of boundary condition is generally classified as non-homogeneous periodic

boundary conditions and typically is more difficult to handle, since information at both ends of the

solution domain influences the boundary control solution at each instance in time. In this example

problem, the adjoint PDE and ODE systems are uncoupled, but generally for a periodic boundary

value problem, the PDE and ODE systems are coupled together through the boundary condition,

thus further complicating optimal control solutions.
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Applications to Wind Tunnel Flow Control

Optimal flow control of a wind tunnel can be synthesized using the theory developed in the present

study. In future wind tunnel flow control studies, two types of optimal control problems are to be

considered: trajectory optimization and adaptive disturbance feedforward control. In determining

an optimal trajectory for transferring a flow condition in a wind tunnel from one equilibrium to

another, the optimality conditions involving the two PDE systems and two ODE systems must

be solved concurrently. This is a two point boundary value problem whose solutions may be

obtained by various optimization techniques such as the conjugate gradient method. Prior to form-

ing a numerical solution, the system and adjoint PDEs must be discretized by various numerical

techniques. Because of the time evolution nature of the solutions, the stability of a numerical dis-

cretization must be considered. The Courant-Friedrichs-Lewy (CFL) condition generally must be

satisfied [13].

Another problem of interest for a wind tunnel control application is adaptive disturbance feedfor-

ward control. The problem may be formulated as a linear PDE system with a disturbance input

yt + Ayx + By + Cw = 0

wherew is the disturbance which physically represents the test model drag coefficient. Typically,

during a wind tunnel test, the model is actuated through a series of angles of attack. Changes in the

flow around the test model cause the flow condition in the wind tunnel to meander from a setpoint.

Presently, to minimize this flow deviation, the test model has to be paused in between changes

in the pitch angle so that the flow condition can be regulated. It would be desirable to improve

the flow control strategy by allowing the test model to be actuated continuously while the flow

condition would be maintained near its setpoint.

The proposed control strategy would employ an adaptive neural network learning algorithm to

predict the model-induced loss factor. The control variables would then be calculated based on a

receding horizon optimal control approach to predict a feedforward control in coordination with
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the model actuation to maintain the flow condition as close to the set point as possible. A receding

horizon optimal control deals with a control during a short time horizon throughout which the

time-varying disturbance may be assumed constant. A typical cost functional may be as follows

J =
1

2

∫ t+T

t

∫ L

0

yTPydxdτ +
1

2

∫ t+T

t

(
uTQu + vTRv

)
dτ

Concluding Remarks

This paper presents some recent results in optimality conditions for boundary control of a dis-

tributed system governed by first order, quasilinear hyperbolic partial differential equations in the

presence of a lumped-parameter system at the boundary defined by ordinary differential equations.

The formulation in terms of Hamiltonian functions and differential operators provides some simi-

larity in optimality conditions to those of ordinary differential equations. A linear, time-invariant

system was provided as an example to demonstrate the application of the theory in deriving a

boundary control feedback law. A proposed solution was given in a form of a quasi-steady state

control obtained by solving a matrix Lyapunov differential equation in space and a matrix Riccati

differential equation in time successively. Wind tunnel control applications based on the present

theory were discussed for future work.
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